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Abstract
The solution of the problem of one-dimensional, unsteady, isentropic gas flow
with the use of Riemann’s invariants gives rise to a linear hyperbolic partial
differential equation with the ratio of specific heats as an essential parameter.
The partial differential equation has 3 + 1 + ∞ Lie point symmetries. The
classical solutions are recovered with the use of the nongeneric symmetries to
construct similarity solutions. Further solutions, both polynomial and other, are
constructed using the invariants of the Lie point symmetries as seed solutions
and the property of mapping solutions into solutions. These solutions are
analogous to the well-known heat polynomials.

PACS numbers: 02.10.De, 02.20.Sv

1. Introduction

Heat polynomials were introduced in the context of solutions to the heat equation in the
last quarter of the nineteenth century [3, 4] and are closely associated with the Hermite
polynomials that have found application in the solution of the Schrödinger equation, which is
closely connected to the heat equation in a mathematical if not a physical sense. In the century
and a quarter since Appell’s initial paper, there have been extensions in a number of directions.
Some examples are the generalized heat equation in which the second derivative with respect
to the space variable is replaced by a higher order derivative [16, 43], multi-dimensional
versions of the polynomials [6], a generalization of the radial version of the heat equation in
which there is no angular dependence, and the integral dimension of the space is replaced by
a non-negative real number [12] and parallel treatments for the linear wave equation [27, 44].
Apart from the final citation, the approach is classical. In the paper of Yehorchenko et al [44],
conditional symmetry operators are employed. However, the methodology employed there is
different to that used in this paper. Macia̧g [27] is concerned with the use of wave polynomials
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in the solution of three-dimensional homogeneous and inhomogeneous wave equations. Here,
we are concerned with the construction of polynomial and other solutions.

In this paper, we wish to present some families of polynomials and other functions which
arise as closed-form solutions of a hyperbolic equation, which arises in the analysis of a
classical problem in unsteady one-dimensional, isentropic gas flow. In this respect, we extend
the concept of heat polynomials to another area, hence, the expression ‘air’ polynomials.

Firstly, we remind the reader of the derivation of the governing equation in terms of
Riemann’s invariants as the independent variables. We apply the Lie analysis for the possession
by this equation of point symmetries. We use the symmetries to generate basic solutions and
then the property of the mapping of solutions into solutions to generate further solutions
thereby establishing whole families of solutions.

The symmetries which we can actively use for the generation of basic solutions are three in
number and possess the Lie algebra sl(2, R). This algebra is ubiquitous in the study of several
classes of differential equation. In the first instance, it is characteristic of scalar nth-order
ordinary differential equations of maximal symmetry and a fortiori of systems of nth-order
ordinary differential equations of maximal symmetry. Secondly, still in the realm of ordinary
differential equations, the algebra sl(2, R) is the essential identifier of Ermakov systems
[8, 19, 37], which have found considerable application in practical matters [18, 24–26] as well
as providing an excellent springboard for studies of classes of integrable systems [10, 38–41].
In the more immediately related field of partial differential equations, this algebra is found in
the quantal counterparts of the classical Hamiltonian systems associated with linear second-
order differential equations and Ermakov–Pinney equations [2, 23], and by simple extension
through point transformations to a dazzling variety of evolution equations describing models
arising in such divers areas as the conduction of heat, the development of tumours in the brain
and the pricing of stocks and other financial instruments in the markets. Some of the studies
relating to the algebraic aspects of these several fields may be found in [5, 9, 20, 21, 29, 33].

In the following sections, we see that this classical equation based upon a very classical
treatment provides a basis for an analysis of the differential equation concerned in terms of
the protocols of modern group analysis. The analysis itself is founded upon the work of
Lie, which itself is now already over 130 years old, on continuous symmetry groups and
infinitesimal transformations, but the realization of the practical application of the ideas of
Lie has really only occurred in the last half century following the pioneering initiatives of
Ovsiannikov [34–36]. In this work, we provide a modest contribution to the group theoretical
analysis of gas dynamics through the connection of the ideas of invariance under infinitesimal
transformations and the existence of polynomial solutions to the heat equation—not to mention
related partial differential equations—which go back to the days of Laguerre and Appell
[3, 14]. We demonstrate the relationship between these polynomial solutions and the group
theoretical properties of the equation we consider. The attraction of this equation is that it
does not belong to the class of evolution equations, since it is hyperbolic, generally connected
with the ideas of heat polynomials1.

In the case of one-dimensional, unsteady, isentropic flow of a gas in the absence of
viscosity, the governing equations are

∂ρ

∂t
+

∂

∂x
(ρu) = 0 (1.1)

1 Given that the heat equation, as it is commonly called, has so many applications in areas far removed from the
concept of heat, the use of the adjectival noun is doubtless unjustified except on historical grounds. As a major source
of potential application is in the area of financial mathematics, perhaps the connection with something which is hot
is a little unfortunate.
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∂

∂t
(ρu) +

∂

∂x
(ρu2 + p) = 0 (1.2)

∂

∂t

(
p

ργ

)
+ u

∂

∂x

(
p

ργ

)
= 0, (1.3)

representing the continuity of mass, conservation of momentum and adiabatic flow,
respectively2. In the simplest case of a polytropic gas equation, (1.3) is satisfied by the
equation of state

p = kργ , (1.4)

where k is a constant, and one can write the speed of sound in the gas, c, as

c2 = dp

dρ
= γp

ρ
= γ kργ−1 (1.5)

so that the differential relation
dρ

ρ
= 2

(γ − 1)

dc

c
(1.6)

follows. We eliminate p and ρ from (1.1) and (1.2) in favour of c by the use of (1.4), (1.5)
and (1.6) to obtain

∂c

∂t
+ u

∂c

∂x
+

(γ − 1)

2
c
∂u

∂x
= 0 (1.7)

∂u

∂t
+ u

∂u

∂x
+

2c

(γ − 1)

∂c

∂x
= 0 (1.8)

for the continuity and momentum equations, respectively.
By recombination of (1.7) and (1.8) through addition and subtraction we obtain(

∂

∂t
+ (u + c)

∂

∂x

)
r = 0 (1.9)

(
∂

∂t
+ (u − c)

∂

∂x

)
s = 0, (1.10)

where

r = 1

2
u +

c

γ − 1
and s = −1

2
u +

c

γ − 1
(1.11)

are the Riemann invariants.
The characteristic curves of (1.9) and (1.10) may be written in terms of the differential

forms

dx = (u + c) dt and dx = (u − c) dt. (1.12)

We introduce the Riemann invariants, r and s, as new independent variables by rewriting the
characteristic curves in (1.12) as a pair of first-order linear equations, videlicet

∂x

∂s
= (u + c)

∂t

∂s
and

∂x

∂r
= (u − c)

∂t

∂r
. (1.13)

From (1.11) we obtain that

u + c = 1
2 [(γ + 1)r + (γ − 3)s] and u − c = − 1

2 [(γ − 3)r + (γ + 1)s]. (1.14)

2 The symbols have the standard meanings of time (t), displacement (x), velocity (u), density (ρ), pressure (p) and
the ratio of specific heats (γ ).
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We may use the requirement of the equality of the mixed derivatives to eliminate x from
(1.13) to obtain a single linear second-order partial differential equation for t (r, s). When we
take (1.14) into account, this second-order equation is

2
(γ − 1)

(γ + 1)

∂2t

∂r∂s
+

1

(r + s)

(
∂t

∂r
+

∂t

∂s

)
= 0. (1.15)

In the case of polytropic gases, it is known that an explicit solution of the initial value
problem for (1.15) is possible in terms of the hypergeometric function. In this paper, we
consider the solutions obtained by means of the Lie point symmetries of this hyperbolic
equation. The classical solutions are recovered using the techniques of Lie’s symmetry
analysis. We find that there exist classes of polynomial solutions reminiscent of the classical
heat polynomials of the heat equation. In addition, we find solutions in terms of rational
functions.

2. The symmetry analysis

We rewrite (1.15) in a more standard notation for a hyperbolic equation as

(x + y)
∂2u

∂x∂y
+ B

(
∂u

∂x
+

∂u

∂y

)
= 0, (2.1)

where the parameter B contains the fraction of the ratio of specific heats. Specifically

B = 1

2

γ + 1

γ − 1
. (2.2)

Given the physical origin of the parameter γ , the parameter B is necessarily positive. However,
we allow ourselves a certain amount of leeway in the interpretation of the parameter, i.e. B

may be any real number.
We note that the parameter B is an essential parameter of (2.1), since it cannot

be removed from the equation by rescaling. The different classes of gas—monotomic,
diatomic, etc—do give rise to different classes of solution, i.e. the mathematical analysis
reflects that different categories of gas are different. We recall that in the cases that
γ = (2N + 1)/(2N − 1) �⇒ B = N , where N is a non-negative integer, the solution
of (2.1) is known to be possible in terms of elementary functions. Included in these special
values are the ratios 5/3, 7/5 and 11/9, which are the values of the ratios of the specific heats
for a perfect gas, air and gases produced by some combustion processes.

For B a natural number, the general solution of (2.1) is

u = K +
∂N−1

∂xN−1

f (x)

(x + y)N
+

∂N−1

∂yN−1

g(y)

(x + y)N
, (2.3)

where f and g are arbitrary functions and is some constant. By a proper choice of the two
arbitrary functions and constant, the initial conditions of the problem can be satisfied.

With the aid of program LIE [13, 42] for B �= 1, the Lie point symmetries of (2.1) are
easily found to be

�1 = ∂x − ∂y (2.4)

�2 = x∂x + y∂y − Bu∂u (2.5)

�3 = x2∂x − y2∂y − Bu(x − y)∂u (2.6)

�4 = u∂u (2.7)

�5 = f (x, y)∂u, (2.8)
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where f (x, y) satisfies the equation

(x + y)
∂2f

∂x∂y
+ B

(
∂f

∂x
+

∂f

∂y

)
= 0, (2.9)

which is to be expected since (2.1) is a linear equation3. As the case B = 1, which corresponds
to the value γ = 3, has some peculiar ramifications, we treat it separately in the next section.

The Lie brackets of the symmetries listed in (2.9) are

[�1, �2]LB = �1, [�2, �3]LB = �3, [�3, �4]LB = 0,

[�1, �3]LB = 2�2, [�2, �4]LB = 0, [�3, �5]LB = �5,

[�1, �4]LB = 0, [�2, �5]LB = �5,

[�1, �5]LB = �5, [�4, �5]LB = −�5,

(2.10)

where the brackets with �5 are in a generic sense, i.e. the function f (x, y) in �5 of the right-
hand side of the expression for the Lie Bracket need not be the same as for the function in �5

within the bracket on the left-hand side.
The Lie brackets in (2.10) indicate that the algebra of the symmetries is {A1 ⊕ A3,8} ⊕s

∞A1, where we use the Mubarakzyanov classification scheme [28, 30–32]. The algebra
A3,8 has the common name sl(2, R). The solution symmetries, �5, constitute an infinite-
dimensional Abelian subalgebra. In the case of the homogeneity symmetry, �4, the Lie bracket
with �5 is essentially the identity. However, the elements of sl(2, R) have the potential to map
nontrivially elements of ∞A1 to other elements of ∞A1.

The Lie brackets with the ‘solution’ symmetry, �5, provide a route to the determination of
new symmetries in the standard sense that Lie point symmetries map solutions into solutions.
In the case of ordinary differential equations this mapping is somewhat trivial since the
number of linearly independent solutions is equal to the order of the equation. However,
when we are dealing with partial differential equations, the number of solutions is potentially
infinite—boundary and initial conditions do make decimation a gentle procedure—and so the
role of symmetries in generating solutions is quite critical.

For symmetries to play a critical role in the generation of solutions under the characteristic
property of the mapping of solutions into solutions, there is the necessity for a knowledge of
symmetries other than our so-called solution symmetries. The procedure for the mapping of
a solution into a solution is found in the properties of the Lie bracket as exemplified above.
The role of the symmetries in connection with the ‘solution’ symmetry has been very clearly
identified in quantum mechanics (cf [23, 2]) and the same procedure may be applied for
evolution equations in general. Whether the solution so generated is useful for the problem
as completely defined—i.e. the boundary/initial conditions can be satisfied by the solutions
provided by the symmetries—is again another matter. In the absence of other symmetries
there does not exist a route for the determination of similarity solutions within the procedure
of Lie.

Since (2.1) is a linear partial differential equation, the symmetries �4 and �5 are generic.
The symmetries, �1, �2 and �3, are nongeneric and constitute an sl(2, R) subalgebra. We
have noted the use of this algebra for the treatment of differential equations, both ordinary and
partial, in the introduction.

3 There are instances in which a nonlinear equation gives rise to the same type of an infinite class of Lie point
symmetries based upon the solution of a differential equation which is linear and so obviously not the original equation
being analysed. In some cases the linear equation may be obtained by a reasonably obvious point transformation
from the original nonlinear equation. However, at least one instance exists for which such a transformation is not
only obvious, but the structure of the original equation would appear to make it impossible [21]. For a treatment of
a number of nonlinear equations arising in plasma physics, see the recent paper by Cicogna et al [7]. Adaptation of
the methods used in this paper to such nonlinear equations could be both interesting and useful.
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The algebra of the Lie point symmetries of (2.1) is typical of one of the possible classes
of algebra associated with the one-dimensional heat equation. In this case the heat equation
has a source term of the form x−2u which is typical for the corresponding Ermakov–Pinney
ordinary differential equation. As a hyperbolic equation (2.1) can be written as a 1 + 1 wave
equation by a simple rotation of the independent variables. As such one would expect to see
the Poincaré algebra, or a subset of it, rather than what we have listed in (2.5)–(2.9). The
symmetry, �3, does not fit into the scheme of the Poincaré algebra.

3. Special cases

3.1. B = 1

When B = 1, equation (2.1) has the form

(x + y)
∂2u

∂x∂y
+

∂u

∂x
+

∂u

∂y
= 0. (3.1)

LIE returns the following results for the Lie point symmetries of (3.1). The general form of
the symmetry is

� = a(x)∂x + b(y)∂y + (uf (x, y) + g(x, y))∂u, (3.2)

where (x, y) is a solution of (3.1), and the other functions are related according to the two
equations

(x + y)2 ∂f

∂x
+ (x + y)

da(a)

dx
+ a(x) + b(y) = 0 (3.3)

(x + y)2 ∂f

∂y
+ (x + y)

db(y)

dy
+ a(x) + b(y) = 0, (3.4)

which is beyond the capability of the program to handle.
We rewrite equations (3.3) and (3.4) as

∂f

∂x
= − ∂

∂x

[
a(x)

x + y
+

b(y)

x + y

]
(3.5)

∂f

∂y
= − ∂

∂y

[
a(x)

x + y
+

b(y)

x + y

]
(3.6)

and it is evident that the system is consistent. We integrate (3.5) and substitute the result into
(3.6) to obtain

f (x, y) = C − a(x) + b(y)

x + y
, (3.7)

where C is a constant and gives the homogeneity symmetry of (3.1).
In addition to the infinite number of solution symmetries (3.1) possesses a doubly infinite

family of symmetries based on the arbitrary functions a(x) and b(y). We may write the three
classes of symmetry as

�1 = a(x)∂x + b(y)∂y − a(x) + b(y)

x + y
u∂u (3.8)

�2 = u∂u (3.9)
�3 = g(x, y)∂u. (3.10)
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The Lie brackets are

[�1,�1]LB = �1, [�1,�2]LB = 0, [�1,�3]LB = �3,

[�2,�3]LB = 0, [�3,�3]LB = 0,
(3.11)

where in the case of the first and last brackets different representatives of the class of
symmetries, �1, respectively �3, are taken. In the case of the Lie Brackets between �1

and �3 the result of taking the bracket is generically another element of the class of �3.
Naturally it can be zero. The two classes of bracket may be used to generate families of
symmetries of the class of �1 and new solutions.

We construct the similarity solution based on the class of �1. The associated Lagrange’s
system is

dx

a(x)
= dy

b(y)
= − (x + y) du

[a(x) + b(y)]u
. (3.12)

The invariant associated with the first and second elements of (3.12) is

v =
∫

dx

a(x)
−

∫
dy

b(y)
. (3.13)

To obtain the second invariant we combine the first and second elements of (3.12) so that we
have

d(x + y)

a + b
= − (x + y) du

(a + b)u
(3.14)

and the second invariant is

w = (x + y)u. (3.15)

When we make the substitution u = (x + y)−1h(v) into (3.1), we obtain the trivial equation
h′′(v) = 0. The constants of integration may be absorbed into the integrals of the arbitrary
functions, a(x) and b(y), so that we obtain the solution

u(x, y) = 1

x + y

{∫
dx

a(x)
−

∫
dy

b(y)

}
, (3.16)

which we identify as the known solution, (2.3), given above up to the additive constant for the
case that N = 1.

If we take the equation for the case that N = 1, videlicet (3.1), and differentiate it with
respect to x and y in turn, we obtain

(x + y)
∂2

∂x∂y

(
∂2u

∂x∂y

)
+ 2

(
∂

∂x

(
∂2u

∂x∂y

)
+

∂

∂y

(
∂2u

∂x∂y

))
= 0. (3.17)

This is the equation for the case of N = 2 if we take the solution to be ∂2u/∂x∂y. We calculate
this derivative for the function

u1(x, y) = f (x)

x + y
+

g(y)

x + y
, (3.18)

in which we have replaced the integrals of arbitrary functions with arbitrary functions. Then
we obtain

u2(x, y) = −
{

∂

∂x

[
f (x)

(x + y)2

]
+

∂

∂y

[
g(y)

(x + y)2

]}
. (3.19)

The general result, (2.3), may be deduced by induction.
In the case that the parameter, B, is a positive integer, the solution of (2.1) is a consequence

of the quite different symmetry properties of (2.1) in the case that B = 1. (The additive constant
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is automatic.) We observed above that the integral values of B, at least for small values of the
integers, correspond to the physically realized values of the ratio of the specific heats, γ . The
ratios mentioned above correspond to B = 2, 3 and 5. When B = 1, we have γ = 3. This
is not a physical value. It is amusing that the physically relevant solutions can come from a
physically irrelevant solution.

3.2. B = 1
2

We do not dwell upon the value of B = 1
2 at length since it corresponds to the scarcely physical

case of the ratio of specific heats being infinite, but provide an indication of the construction
of solutions for this value. There is nothing esoteric about the calculation of further solutions
given a seed solution for B = 1

2 . For example, if we take the second seed solution, log(x + y),
for �1 in (4.5) and apply �3 as in (5.1), we obtain the solutions

u1 = (x − y)[1 + B log(x + y)] (3.20)

u2 = (x2 + y2)[1 + B log(x + y)] + B(x − y)2[2 + B log(x + y)] (3.21)

u3 = 2(x3 − y3)[1 + B log(x + y)] + 2B(x − y)(4x2 − 2xy − y2)

+ B2(x − y)2[(x − y) + 2(2x + y) log(x + y)] (3.22)

from which it is evident that the general form of the solution so generated by �3 has the form

un = Pn(x, y) + Qn(x, y) log(x + y), (3.23)

where P and Q are polynomials of homogeneous degree n in x and y. We turn now to the
consideration of solutions for general values of the parameter B.

4. The seed solutions

The nontrivial symmetries of (2.1) are (2.4), (2.5) and (2.6). We can use all three to generate
solutions invariant under the particular symmetry. The invariants of �1 are found from the
solution of the associated Lagrange’s system

dx

1
= dy

−1
= du

0
(4.1)

and are v = x + y and u. We substitute

u(x, y) = g(x + y) = g(v) (4.2)

into (2.1) to obtain

vg′′ + 2Bg′ = 0, (4.3)

which has the solution

g(v) =
{

M + Nv−2B+1, B �= 1
2 ,

M + N log v, B = 1
2 ,

(4.4)

where M and N are constants of integration, so that we have the set of similarity solutions

u(x, y) =
{{

1, (x + y)−2B+1, B �= 1
2

}{
1, log(x + y), B = 1

2

}. (4.5)

In the case of �3 the associated Lagrange’s system is

dx

x2
= dy

−y2
= du

−Bu(x − y)
, (4.6)
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the invariants are

v = 1

x
+

1

y
, u = x−By−Bg

(
1

x
+

1

y

)
(4.7)

and

u(x, y) =
{{

(xy)−B, (xy)−B(x + y)−2B+1, B �= 1
2

}{
(xy)−1/2, (xy)−1/2 log(x + y), B = 1

2

}
.

(4.8)

We have recorded the solutions for B = 1
2 , but, as they correspond to the value γ being

infinite, they are not exactly of physical relevance.
We note that the second-order ordinary differential equation satisfied by the similarity

solution, g, is the same for both �1 and �3. The equivalence of these two symmetries in the
algebra sl(2, R) is well known.

We have treated �1 and �3 in sequence due to their similarity. We turn now to the odd
element of the algebra sl(2, R).

The corresponding expressions for �2 are

dx

x
= dy

y
= du

−Bu
, (4.9)

v = y

x
, u = x−Bg

(y

x

)
, (4.10)

where g satisfies the equation

v(v + 1)g′′ + ((2B + 1)v + 1)g′ + B2g = 0. (4.11)

Equation (4.11) is a hypergeometric equation. The standard form of the hypergeometric
equation is ([1, p 562, 11, p 1072])

z(1 − z)
d2w

dz2
+ [c − (a + b + 1)z]

dw

dz
− abw = 0 (4.12)

and (4.11) is converted to the standard form by the simple reflection z = −v. However, of
more interest is that the parameters a, b and c of (4.12) are specifically related in (4.11) for
we have a = b = B and c = 1. Rather than invoking the heavy theory of the hypergeometric
function, we can make use of the relations between the parameters to provide a treatment by
the method of Frobenius (see [17, 396 ff] for an extensive discussion of the method).

We make the ansatz

g(v) =
∞∑
i=0

aiv
i+σ (4.13)

and substitute it into (4.11) to obtain
∞∑
i=0

(i + σ)2aiv
i+σ−1 +

∞∑
i=0

(i + σ + B)2aiv
i+σ = 0 (4.14)

from which it is evident that the indicial equation is just σ 2 = 0 or σ = 0(2). Consequently
it is necessary to make the ansatz

g(v) = u1 log v + u2 (4.15)

and, after this is substituted into (4.11) and we separate by coefficients of log v and not-log v,
obtain

v(v + 1)u′′
1 + [(2B + 1)v + 1]u′

1 + B2u1 = 0 (4.16)
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v(v + 1)u′′
2 + [(2B + 1)v + 1]u′

2 + B2u2 = −2[(v + 1)u′
1 + Bu1], (4.17)

where in (4.17) there has been a certain amount of simplification.
We note that formally (4.16) is the same as (4.11) and we make the ansatz (4.13). From

(4.14) it is a simple matter to obtain the two-term recurrence relation

ai+1 = −
(

i + B

i + 1

)2

ai, (4.18)

which leads to this part of the solution being

u1(v) = α

∞∑
n=0

(−1)n
(

(B)n

n!

)2

vn, (4.19)

where (B)n is Pochhammer’s symbol [1, p 256].
Since the left-hand side of (4.17), the complementary function, is given by (4.19), we

now seek a particular solution of (4.17). The recurrence relation is

bi+1 = −
(

B + i

i + 1

)2

bi − 2

(i + 1)2
{(i + 1)ai+1 − (B + i)ai}, (4.20)

where in the assumed series for u2 we have replaced ai with bi . Since the coefficients in the
series of the complementary solution are given by

bnc = (−1)n
(

(B)n

n!

)2

b0, (4.21)

we may write the particular solution as

bnp = (−1)n
(

(B)n

n!

)2

b(n) (4.22)

so that (4.20) becomes, after a modicum of simplification,

b(n + 1) = b(n) + 2

{
1

n + 1
− 1

B + n

}
(4.23)

from which it follows that

b(n) = b(0) + 2
n−1∑
j=0

(
1

j + 1
− 1

B + j

)
a0. (4.24)

The solution of (4.11) is then

g(v) = α




∞∑
n=0

(−1)n
(

(B)n

n!

)2

vn


log v + 2

n−1∑
j=0

(
1

j + 1
− 1

B + j

)





+ β

{ ∞∑
n=0

(−1)n
(

(B)n

n!

)2

vn

}
. (4.25)

This solution coincides with that given by Abramowitz and Stegun [1] (15.5.17, p 564) when
suitably adjusted. The value B = 1

2 does not impose a different form of solution. Since the
logarithmic term has already entered, perhaps one should not be surprised.

Both solutions in (4.25) can terminate if B is a negative integer. If B = −N , which
corresponds to the nonphysical γ = (2N − 1)/(2N + 1) < 1, the solution has the form
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g(v) = a0PN−1(v) log v + b0QN−1(v), (4.26)

which in the physical case is valid for all nonzero v, since the variables x and y are necessarily
positive. More generally the series in (4.25) converge if the dual conditions

|v| <

(
n + 1

n + B

)2

|v| <
n + 1

n + B
(4.27)

are satisfied in the limit as n −→ ∞. The radius of convergence is 1, which is just the case
for the expansion of the standard hypergeometric function about the origin4.

We have devoted more time and space to the solutions corresponding to �2 for two reasons.
Firstly they are not as simple as for �1 and �3. This is not an original observation for the
additional effort to find the solution corresponding to �2 has been experienced elsewhere [22].
Secondly unlike the solutions for �1 and �3 the solutions obtained are not of an elementary
form except for the particular case in which B is a negative integer. In this context it is
of interest to note that both solutions terminate for the same value of B. This is not such
a common experience. Usually, if one series solution terminates, the other must labour to
infinity. The solutions for the autonomous Schrödinger equation for the simple harmonic
oscillator are a classic case in point. The contrast is that here the two-term recurrence relation
moved one at a time whereas in that case odd and even solutions exist and series in odd and
even powers dependent upon an (integral) parameter are highly unlikely to terminate together.

5. Generation of solutions

We commence with the ‘trivial’ solution f0 = 1 of the solution set for �1. The Lie Brackets
of �3 and �2 with �5 are

[�3, �5]LB =
[
x2 ∂f

∂x
− y2 ∂f

∂y
+ B(x − y)f

]
∂u (5.1)

and

[�2, �5]LB =
[
x

∂f

∂x
+ y

∂f

∂y
+ Bf

]
∂u, (5.2)

respectively.
In the case of �2 we note that without −Bu∂u the effect of the symmetry is just xfx + yfy .

This may be a more attractive form for the generation of solutions in general. However, in the
case of the seed solution f0 = 1 to be used here, this form of the similarity symmetry acts as
a specific annihilation operator. The form of �2 which we have chosen was dictated by the
need for the closure of the algebra of the three nontrivial symmetries. The generic symmetry,
�4, has the Lie bracket, [�4, �5]LB = −f ∂u = −�5, i.e. it is essentially the identity and not
of any apparent attraction.

The first few solutions generated from the trivial solution by �3 are

u1 = B(x − y) (5.3)

u2 = B(x2 + y2) + B2(x − y)2 (5.4)

u3 = 2B(x3 − y3) + 3B2(x − y)(x2 + y2) + B3(x − y)3 (5.5)
u4 = 6B(x4 − y4) + B2{3(x2 − y2)(x2 + y2) + 2(x − y)(x3 + y3)}

+ 6B3(x − y)2(x2 + y2) + B4(x − y)4. (5.6)

4 One notes that a similar reduction can be made if one chooses v = x/y rather than y/x. Consequently the effect
of the restriction, |y/x| < 1, is not as great as the ratio test implies.
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We observe that the solutions generated are homogeneous of degree n in x and y for un.
Consequently the Lie Bracket of �2 and �5 has the nature of an eigenvalue relationship in that

[�2, �5]LB = (B + n)�5. (5.7)

There are variations on the taking of this Lie bracket which one may use. If we take
�̄2 = x∂x + y∂y and act on fn, we have

�̄2fn = nfn, (5.8)

i.e. �̄2 plays a role similar to that of ∂t in the algebraic treatment of the time-dependent
Schrödinger equation [2, 23] and is truly an eigenvalue equation. On the other hand the action
of �2 provides a different result in that

�2fn = −(B − n)fn (5.9)

and acts almost as a convolutive eigenvalue operator. In the case that B is a positive integer
there is eventually a zero eigenvalue for what could be a very nontrivial eigenfunction. In
this case the solution generated by �3 from the trivial solution compatible with �1 is also a
solution due to �2 as was discussed in the previous section. Obviously it is not the general
solution associated with �2 since there is the further requirement of compatibility with the
annihilation property of the repeated action of �1.

A less trivial starting point is the first solution due to �3, videlicet

u0 = (xy)−B. (5.10)

The Lie Bracket of �1 with �5 with u0 as f leads to a sequence of solutions of which we give
the first few. Note that, since

[�1, �5]LB =
(

∂f

∂x
− ∂f

∂y

)
∂u, (5.11)

the calculation is the same as taking �1f . We obtain

u1 = B(x − y)(xy)−B−1

u2 = B(B + 1)(x − y)2(xy)−B−2 + 2B(xy)−B−1

u3 = B(B + 1)(B + 2)(x − y)3(xy)−B−3 + 6B(B + 1)(x − y))(xy)−B−2

u4 = B(B + 1)(B + 2)(B + 3)(x − y)4(xy)−B−4 + 12B(B + 1)(B + 2)

× (x − y)2(xy)−B−3 + 12B(B + 1)(xy)−B−2 (5.12)

and in general one can write

un = (�1)
nu0. (5.13)

The general second solution for �3 is

u0 = (xy)−B(x + y)−2B+1. (5.14)

We use �1 to generate the first few of the sequence of solutions, videlicet

u1 = B(x − y)(xy)−B−1(x + y)−2B+1

u2 = (2Bxy + B(B + 1)(x − y)2)(xy)−B−2(x + y)−2B+1

u3 = B(B + 1)(6(x − y)xy − (B + 2)(x − y)2)(xy)−B−3(x + y)−2B+1,

which, apart from the factor (x + y)−2B+1, is the same sequence as that which is generated by
the action of �1 on the seed solution (xy)−B since �1(x + y) = 0.
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It should be clear that a variety of solutions can be presented by means of the use of the
symmetries to act as ladder operators on the seed solutions.

6. A general homogeneous polynomial solution

The solutions generated by �3 are homogeneous polynomials. The formulæ as presented in
(5.3)–(5.6) do not suggest an obvious form for the homogeneous polynomial of the nth-degree
solution. To find the general form of the polynomial we make the substitution

un =
n∑

i=0

aix
iyn−i (6.1)

into (2.1) and make some rearrangements of the terms to obtain
n∑

i=0

ai(B + i)(n − i)xiyn−i−1 +
n∑

i=0

ai+1(i + 1)(B + n − i − 1)xiyn−i−1 = 0 (6.2)

and the two-term recurrence relation for the coefficients of the polynomial

ai+1 = − (B + i)(n − i)

(i + 1)(B + n − i − 1)
ai, i = 0, 1, . . . , n − 1. (6.3)

Now that we have the recurrence relation for the coefficients of the polynomial we may write
the general formula as

un =
n∑

i=0

(−1)i
n!

(n − i)!i!

(B − 1)i

(B + n − i)i
xiyn−i , (6.4)

where again (q)n indicates Pochhammer’s symbol.
The solution, (6.4), has been obtained in the spirit of the solutions generated by the action

of �3 on the solution symmetry (�5) containing the trivial solution, u(x, y) = 1. What we
have done here is to look for a new way to generate the coefficients of the polynomial. That
solutions of other structure are possible is obvious from the solutions generated in the previous
section.

The second, nontrivial, solution of (4.5) for general values of the parameter B provides
another starting point for a family of solutions generated by �3. The first few solutions so
generated are

u0 = (x + y)−2B+1 (6.5)

u1 = (1 − B)(x − y)u0 (6.6)

u2 = (1 − B)[(x − y)2 + (x2 + y2)]u0. (6.7)

These few solutions are suggestive of a structure for a general solution of this genre. This
is a homogeneous polynomial times the base solution, u0. We make the substitution

un =
(

n∑
i=0

aix
iyn−i

)
(x + y)−2B+1 (6.8)

into (2.1) to obtain the three-term recurrence relation

ai+2 = 1

n − i − 1 − B
{(i + 1 − B)ai + [2(i + 1) − n]ai+1}, (6.9)
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which is not amenable to give a solution of as simple a form as obtained in (6.4). We note that
�3 acts as an annihilation operator for the similarity solution in the case that B = 1.

7. Conclusion

The source problem for the differential equation at the heart of this paper, (2.1), is a classic
problem in fluid mechanics. This equation, from which the solution to the original system,
(1.1)–(1.3), flows, is a hyperbolic equation. In terms of the Lie symmetry analysis, it differs
more than somewhat from the usual expectation of the symmetries of a hyperbolic equation.
The 1+1 wave equation, the closest analogue, has a doubly infinite set of Lie point symmetries
whereas (2.1) has an algebraic structure of strongly reminiscent of the 1 + 1 heat equation
with a source term of Ermakov–Pinney form except in the specific instance that the parameter
B = 1, which corresponds to the nonphysical γ = 3. Then the algebraic structure differs
markedly from both the heat equation and the wave equation.

The symmetries in the case B = 1 not only lead to the known solution for this case but
also to the solutions known for B = N , where N is a positive integer.

More generally we were able to construct both polynomial and other solutions for any
value of B. In the case of B a positive integer the other solutions are rational. Otherwise they
are algebraic or transcendental depending upon whether B is rational or irrational.

All of the functions generated are solutions of (2.1). In a manner similar to that found
with the study of heat polynomials, one could contemplate the construction of polynomials
which are not solutions of (2.1), but rather the coefficients of nonpolynomial functions with the
products being solutions of (2.1). This is in the same spirit as the solution of the Schrödinger
equation for the simple harmonic oscillator. The Hermite polynomials are solutions not of
the Schrödinger equation but of a related equation obtained by the removal of an exponential
term containing both the time and space variables. We look forward to the investigation of the
properties of such polynomials and their potential applications.
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